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Abstract

In this paper, we investigate spacelike rectifying curves via dilation of unit speed spacelike or
timelike curves on Lorentzian unit spheres in Minkowski 3-space E3

1 . Then, we define a the
centrode Dα(s) of a unit speed spacelike curve α(s) in E3

1 . In last section, we prove that if a
unit speed spacelike curve α(s) in E3

1 is neither a planar spacelike curve nor a helix, then its
dilated centrode β(s) = ρα(s)Dα(s), with dilation factor ρα(s), is always a rectifying curve,
where ρα is the radius of curvature of α.
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1 Introduction

Let α : I → E3
1 be a unit speed spacelike curve in Minkowski 3-space E3

1 with Frenet-Serret
apparatus {κα, τα, Tα, Nα, Bα} where κα, τα, Tα, Nα and Bα denote the curvature, the torsion, the
unit tangent Tα, the unit principal normal Nα and the unit binormal Bα of α, respectively.

Some important types of curves are helices (characterized by τα = cκα with a nonzero constant

c), spherical curves (characterized by (ρ
′

ασα)
′

+
ρα
σα

= 0 with ρα = κ−1
α =radius of curvature,

σα = τ−1
α =radius of torsion) and finally, rectifying curves given by

τα
κα

= as + b with constants

a 6= 0, b.
The notion of rectifying curves was introduced by B.Y.Chen in [2]. By definition, a regular unit

speed space curve α(s) in E3 is called a rectifying curve, if its position vector always lies in its
rectifying plane.

In [7], some characterizations of rectifying curves given by Ilarslan and Nesovic in Euclidean
space. Also, Ilarslan, Nesovic and Petrovic-Torgasev have investigated rectifying curves in Minkowski
space [9].

As spacelike rectifying curves are important, so is the relation between the Frenet-Serret ap-
paratus {κα, τα, Tα, Nα, Bα} of the spacelike rectifying curve α(t) = f(t)y(t) and that of the unit
speed non-null curve y(t). In this paper, we derive the Frenet-Serret apparatus of the spacelike
rectifying curve α(t) in terms of that of the unit speed non-null curve y(t).

Moreover, it is known that centrodes (i.e angular velocity vectors) play some important roles
in mechanics and joint kinematics [1, 6, 15, 17, 18]. Regarding the centrode Dα = ταTα − καBα of
a unit speed spacelike curve in E3

1 , it was shown in [8] that the centrode of a unit speed spacelike
curve α : I → E3

1 with non-zero constant curvature κα and non-constant torsion τα is a spacelike
rectifying curve and vice versa.

In [4], rectifying curves as centrodes and extremal curves in Euclidean space are studied by Chen
and Dillen. After them Ilarslan and Nesovic studied rectifying curves as centrodes and extremal
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curves in Minkowski 3-space [8]. In [19], extended rectifying curves in Minkowski 3-space are studied
by Yılmaz, Gök and Yaylı.

In this paper, we study the spacelike rectifying curves in Minkowski 3-space. By using similar
methods as in [5] we study spacelike rectifying curve as centrode and dilated centrode.

2 Preliminaries

The Minkowski 3-space E3
1 is Euclidean 3-space E3 provided with the standard flat metric given

by

g = −dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . g is defined that a vector v ∈ E3

1 can be
spacelike if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and null if g(v, v) = 0 and v 6= 0. Moreover,
the norm(length) of a vector v is given by ‖v‖ =

√
|g(v, v)|, two vectors v and w are said to be

orthogonal, if g(v, w) = 0. An arbitrary curve α(s) in E3
1 , can locally be spacelike, timelike or null,

if all its velocity vectors α
′
(s) are respectively spacelike, timelike or null. If g(α

′
(s), α

′
(s)) = ±1,

the non-null curve α is said to be of unit speed (or parameterized by arc-length function s).
The Frenet frame {Tα, Nα, Bα} of a unit speed spacelike curve α(s) in E3

1 , with g(α
′′
(s), α

′′
(s)) 6=

0 for each s, is given by Tα(s) = α
′
(s), Nα(s) =

α
′′
(s)

‖α′′(s)‖
, Bα(s) = Tα(s) × Nα(s). Let us put

g(Tα, Tα) = 1 and g(Nα, Nα) = ε = ±1. Then g(Bα, Bα) = −ε and the following Frenet formulas
hold [12]:

T
′

α(s)=κα(s)Nα(s),

N
′

α(s)=−εκα(s)Tα(s) + τα(s)Bα(s),

B
′

α(s)=τα(s)Nα(s).

(2.1)

Accordingly, the Frenet frame of α satisfies the equations,

Tα ×Nα=Bα,
Nα ×Bα=−εTα,
Bα × Tα=−Nα.

(2.2)

We also recall that the pseudosphere of radius 1 and center at the origin is the hyperquadric in E3
1

defined by
S2
1 = {v ∈ E3

1 : g(v, v) = 1},

and the pseudohyperbolic space of radius 1 and center at the origin is the hyperquadric in E3
1

defined by
H2

0 = {v ∈ E3
1 : g(v, v) = −1}.

Let α = I → E3
1 be a unit speed spacelike curve with curvature κα 6= 0 and let {κα, τα, Tα, Nα, Bα}

be the Frenet-Serret apparatus of α. The distance function f(s) = ‖α(s)‖ of the spacelike rectifying
curve satisfies

f(s) =
√
s2 + c1s+ c2,
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where c1 and c2 are constants and the converse is also true. Moreover, it is also known that the
unit speed spacelike curve α is a spacelike rectifying curve if and only if the ratio of torsion τα and
curvature κα satisfies,

τα
κα

= as+ b,

for some constants a 6= 0 and b [7].
The centrode of α : I → E3

1 is defined by,

Dα = ταTα − καBα,

which is the angular velocity vector of the motion of a mass particle along the spacelike curve α
and it obeys the laws of motion:

T
′

α=Dα × Tα,
N

′

α=Dα ×Nα,
B

′

α=Dα ×Bα.
(2.3)

We shall find the curvature κy of the unit speed spacelike curve y(t), which will be used subse-

quent work in this paper. Note that Ty = y
′

and that {y, y′
, y× y′} is an orthonormal frame of E3

1

and thus using Frenet-Serret formulae for y(t) and

y
′′

= y + hy × y
′
, (2.4)

with h = g(y
′′
, y × y′

).

From (2.4) we have

Ty = y
′
, Ny = (

1

κy
y +

h

κy
y × y

′
). (2.5)

It follows from the second equation in (2.5) that

κy =
√
|h2 − 1|. (2.6)

3 Some important results

In this section we recall some theorems from [8,9], which are important for the proofs of theorems
which follow.

Theorem 3.1. Let α = α(s) be a unit speed non-null curve in E3
1 . Then the following statements

hold:
(i) α is a rectifying curve with a spacelike rectifying plane if and only if, up to the parameterization,
α is given by

α(t) =
a

cos (t)
y(t), a ∈ R+

0 ,
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where y(t) is a unit speed spacelike curve lying in S2
1 .

(ii) α is a spacelike (resp. timelike) rectifying curve with a timelike rectifying plane and a spacelike
(resp. timelike) position vector, if and only if up to the parameterization, α is given by

α(t) =
a

sinh(t)
y(t), a ∈ R+

0 ,

where y(t) is a unit speed timelike (resp. spacelike) curve lying in S2
1(resp.H2

0 ).
(iii) α is a spacelike (resp. timelike) rectifying curve with a timelike rectifying plane and a timelike
(resp. spacelike) position vector, if and only if up to the parameterization, α is given by

α(t) =
a

cosh (t)
y(t), a ∈ R+

0 ,

where y(t) is a unit speed spacelike (resp. timelike) curve lying in H2
0 (resp.S2

1) [9]

Theorem 3.2. The centrode of a unit speed spacelike curve α(s) in E3
1 , with constant curvature

κα 6= 0, non-constant torsion and g(α
′′
(s), α

′′
(s)) 6= 0 is a spacelike rectifying curve. Conversely,

every unit speed spacelike rectifying curve in E3
1 , is the centrode of some unit speed spacelike curve

with constant curvature κα 6= 0 and non-constant torsion [8].

4 Spacelike rectifying curves via dilation of spacelike or timelike curves
on Lorentzian unit spheres

In this section, firstly, we assume that α is a spacelike rectifying curve with a timelike position vector

and α(t) =
a

cosh(t+ t0)
y(t), a > 0, t0 ∈ R where y(t) unit speed spacelike curve lying in H2

0 ⊂ E3
1

centered at the origin. However, if we consider an arc of the great circle, y(t) = (cosh t, 0, sinh t)
and the spacelike curve,

α(t) =
a

cosh(t+ t0)
y(t),

= a

(
1

cosh(t+ t0)
cosh (t), 0,

1

cosh(t+ t0)
sinh(t)

)
,

(4.1)

then we get the speed υα and the tangent vector field Tα of α as

υα =
a

cosh2(t+ t0)
, Tα = (− sinh(t0), 0, cosh (t0)), (4.2)

and therefore, the curvature κα of α is zero. Consequently, α cannot be a spacelike rectifying curve,
as the definition of rectifying curve requires that its curvature non-zero. Therefore, not all spacelike

curves that are dilations of unit speed spacelike curve y(t) on H2
0 of the type α(t) =

a

cosh(t+ t0)
y(t)

are rectifying curves. Therefore, the following theorem can be given according to the above findings.

Theorem 4.1. Let y(t) be a unit speed spacelike curve on H2
0 centered at the origin 0 ∈ E3

1 and

let α(t) =
a

cosh(t+ t0)
y(t) be a dilation of α spacelike rectifying curve with a timelike position

vector and a timelike rectifying plane. The Frenet-Serret apparatus of α:

Tα = − sinh(t+ t0)y + cosh (t+ t0)y
′
,
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Nα = y × y
′
,

Bα = − cosh (t+ t0)y + sinh(t+ t0)y
′
,

κα =
1

a
cosh3(t+ t0)

√
κ2y + 1,

τα =
1

a
cosh2(t+ t0) sinh(t+ t0)

√
κ2y + 1

where κy is the curvature of the unit speed spacelike curve y(t).

Proof. By according to hypothesis of the theorem 4.1, the speed of α is given by, vα =
a

cosh2(t+ t0)
).

Since {y, y′
, y × y′} is an orthonormal frame of E3

1 along y(s), we get,

Tα = − sinh(t+ t0)y + cosh (t+ t0)y
′
.

Let s be arc-length parameter for α; then we have,

ds

dt
=

a

cosh2(t+ t0)
.

By differentiating of equation Tα and using equation (2.4) and Frenet-Serret formulae, we get

κα

(
a

cosh2(t+ t0)

)
Nα = cosh (t+ t0)hy × y

′
,

with h = g(y
′′
, y × y′

). Therefore, by according to equation (2.6), we get,

κα =
1

a
cosh3(t+ t0)

√
κy2 + 1,

and

Nα = y × y
′
.

Now, using Bα = Tα ×Nα we get,

Bα = − cosh (t+ t0)y + sinh(t+ t0)y
′
,

with y × (y × y′
) = −y′

and y
′ × (y × y′

) = −y.
After differentiating the equation above and using equation (2.4) and Frenet-Serret formulae we get,

ταNα

(
a

cosh2(t+ t0)

)
= sinh(t+ t0)hy × y

′
,

and it leads to

τα =
1

a
cosh2(t+ t0) sinh(t+ t0)

√
κy2 + 1.

q.e.d.
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Theorem 4.2. Let y(t) be a unit speed timelike curve on S2
1 centered at the origin 0 ∈ E3

1 and let

α(t) =
a

sinh(t+ t0)
y(t) be a dilation of α with a spacelike position vector and a timelike rectifying

plane. The Frenet-Serret apparatus of α:

Tα = − cosh(t+ t0)y + sinh(t+ t0)y
′
,

Nα = y × y
′
,

Bα = − sinh(t+ t0)y + cosh (t+ t0)y
′
,

κα =
1

a
sinh3(t+ t0)

√
κ2y + 1,

τα =
1

a
sinh2(t+ t0) cosh (t+ t0)

√
κ2y + 1

where κy is the curvature of the unit speed timelike curve y(t).

Proof. The proof is made in a similar way to theorem 4.1. q.e.d.

Corollary 4.3. Let y(t) be a unit speed spacelike (resp. timelike) curve on H2
0 (resp. S2

1) that

is not an arc of the great circle, then α(t) =
a

cosh(t+ t0)
y(t) (resp. α(t) =

a

sinh(t+ t0)
y(t)) is a

rectifying spacelike curve.

5 Centrodes of unit speed spacelike curves

Let α : I → E3
1 be a unit speed spacelike curve with Frenet-Serret apparatus {κα, τα, Tα, Nα, Bα}

and let Dα : I → E3
1 be the centrode of α defined by

Dα = ταTα − καBα. (5.1)

By differentiating the expression of Dα and using Frenet-Serret formulae we get

D
′

α = τ
′

αTα − κ
′

αBα.

Therefore, the speed υD of centrode Dα is given by

υD =
√
|(τ ′

α)2 − ε(κ′
α)2|. (5.2)

Hence the unit tangent vector field TD of the centrode is given by

TD =
τ

′

α

υD
Tα −

κ
′

α

υD
Bα. (5.3)

Let s be the arc-length parameter and let κD denote the curvature of the centrode. Then, by
differentiating equation (5.3), we get,

υDκDND =

(
τ

′

α

υD

)′

Tα +

(
τ

′

ακα − κ
′

ατα
υD

)
Nα −

(
κ

′

α

υD

)′

Bα. (5.4)
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Proposition 5.1. Let α : I → E3
1 be a unit speed spacelike curve whose curvature κα and torsion

τα satisfy κα 6= 0 and |(τ ′

α)2 − ε(κ′

α)2| 6= 0. Then α is a helix if and only if its centrode is a line
segment.

Proof. If the centrode α is a line segment, then equation (5.4) gives τ
′

ακα = κ
′

ατα and this shows

that
τα
κα

is a constant. Hence α is a helix.

Conversely, if α is a helix, then we have τα = cκα for some constant c 6= 0, and thus equation (5.4)
gives κD = 0. Hence α is a line segment. q.e.d.

Theorem 5.2. We have:
(a) Let α = α(t) be a unit speed spacelike curve in E3

1 whose curvature κα and torsion τα sat-
isfy κα, τα 6= 0 and |(τ ′

α)2 − ε(κ
′

α)2| 6= 0. Suppose that α is not a helix. Then the centrode
Dα = ταTα − καBα of α is a rectifying spacelike curve if and only if κα and τα satisfy a non-
homogeneus linear equation aκα − bτα = c, so that a, b, c are constants with a2 + b2 6= 0 and c 6= 0.
(b) If κ

′

α 6= 0 for κ
′

α 6= ∓τ
′

α and if the centrode Dα(t) of α(t) is a spacelike rectifying curve, then
the Frenet-Serret apparatus {κD, τD, TD, ND, BD} of the centrode satisfies,

TD =
ĉ√
|ĉ2 − ε|

Tα −
1√
|ĉ2 − ε|

Bα,

ND = Nα,

BD =
1√
|ĉ2 − ε|

Tα +
ĉ√
|ĉ2 − ε|

Bα,

κD =
(ĉκα − τα)

κ′
α(|ĉ2 − ε|)

,

τD =
−ĉτα + κα
κ′
α(|ĉ2 − ε|)

,

where ĉ =
a

b
for ĉ 6= ∓1 and a, b are defined as in statement (a).

(c) If τ
′

α 6= 0 for κ
′

α 6= ∓τ
′

α and if the centrode D(t) is a rectifying spacelike curve, then the Frenet-
Serret apparatus {κD, τD, TD, ND, BD} of the centrode satisfies,

TD =
1√

|1 + c2ε|
Tα +

c√
|1− c2ε|

Bα,

ND = Nα,

BD =
c√

|1− c2ε|
Tα +

1√
|1− c2ε|

Bα,

κD =
−cτα + κα

τ ′
α|1− c2ε|

,

τD =
cκα − τα
τ ′
α|1− c2ε|

,

where c =
b

a
for c 6= ∓1 and a, b are defined as in statement (a).
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Proof. Let α(t) be a unit speed spacelike curve in E3
1 whose curvature κα and torsion τα satisfy

κα, τα 6= 0 and |(τ ′

α)2− ε(κ′

α)2| 6= 0. Suppose that α is not a helix. By according to equations (5.2)
and (5.4), we get,

υDκD〈ND, Dα〉 = τα(
τ

′

α

υD
)
′ − εκα(

κ
′

α

υD
)
′
. (5.5)

Since α is not a helix,
τα
κα

is non-constant. Hence, by according to proposition 5.1, we have κD 6= 0

and as
√
|(τ ′

α)2 − ε(κ′
α)2| 6= 0. Therefore equation (5.5) implies that,

τα(
τ

′

α√
|(τ ′

α)2 − ε(κ′
α)2|

)
′ − εκα(

κ
′

α√
|(τ ′

α)2 − ε(κ′
α)2|

)
′

= 0, (5.6)

holds identically if and only if 〈ND, Dα〉 = 0 holds identically. Consequently, the centrode Dα of α
is spacelike rectifying curve if and only if equation (5.6) holds.
Now we shall solve differential equation (5.6). Since |(τ ′

α)2−ε(κ′

α)2| 6= 0, we have (τ
′

α)2−ε(κ′

α)2 6= 0.
Consequently, we have Case 1,2,3 and 4.
Case (1): Let us assume that ε = −1 and κ

′

α 6= 0. In this case we define a function g1 by

g1(t) = tan−1

(
τ

′

α

κ′
α

)
. (5.7)

From (5.7), we get

sin g1(t) =
τ

′

α√
(τ ′
α)2 + (κ′

α)2
, cos g1(t) =

κ
′

α√
(τ ′
α)2 + (κ′

α)2
. (5.8)

Hence, the equation (5.6) is equivalent to

(τα(cos g1(t))− κα(sin g1(t)))g
′

1(t) = 0. (5.9)

If τα(cos g1(t))− κα(sin g1(t)) = 0 we have,

τα
κα

= tan g1(t) =
τ

′

α

κ′
α

,

which implies that
τα
κα

is a constant. However, this is impossible since the spacelike curve α is not

a helix. Therefore, we obtain g
′

1(t) = 0 from (5.9), and thus g1(t) is a constant. Consequently,

τ
′

α = c1κ
′

α for some constant c1. If we put c1 =
a

b
for constants a, b. Then, we obtain aκα− bτα = c

for some constant c. Since
τα
κα

is non-constant, we must have c 6= 0 and hence a2 + b2 6= 0.

Case (2): Let us assume that ε = −1 and τ
′

α 6= 0. In this case we define a function g2 by

g2(t) = tan−1

(
κ

′

α

τ ′
α

)
. (5.10)
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From (5.10), we get

sin g2(t) =
κ

′

α√
(τ ′
α)2 + (κ′

α)2
, cos g2(t) =

τ
′

α√
(τ ′
α)2 + (κ′

α)2
. (5.11)

Similarly, we know that equation (5.6) is equivalent to,

(−τα(sin g2(t)) + κα(cos g2(t)))g
′

2(t) = 0.

If −τα(sin g2(t)) + κα(cos g2(t) = 0 we have

κα
τα

= tan g2(t) =
κ

′

α

τ ′
α

.

Now, by appyling a similar argument as Case 1, we obtain aκα − bτα = c for some constants a, b, c
with a2 + b2 6= 0 and c 6= 0.
Case (3): Let us assume that ε = 1 and τ

′

α 6= ±κ
′

α 6= 0. In this case we define a function g3 by

g3(t) = tanh−1

(
τ

′

α

κ′
α

)
(5.12)

From (5.12), we get

sinh g3(t) =
τ

′

α√
|(τ ′

α)2 − (κ′
α)2|

, cosh g3(t) =
κ

′

α√
|(τ ′

α)2 − (κ′
α)2|

. (5.13)

Similarly, we know that equation (5.6) is equivalent to,

(τα cosh g3(t)− κα sinh g3(t))g
′

3(t) = 0.

If τα(cosh g3(t))− κα(sinh g3(t)) = 0 we have

τα
κα

= tanh g3(t) =
τ

′

α

κ′
α

.

Now, by appyling a similar argument as Case 1,2 we obtain aκα− bτα = c for some constants a, b, c
with a2 + b2 6= 0 and c 6= 0.
Case (4): Let us assume that ε = 1 and τ

′

α 6= ±κ
′

α 6= 0. In this case we define a function g4 by

g4(t) = tanh−1

(
κ

′

α

τ ′
α

)
. (5.14)

From (5.14), we get

sinh g4(t) =
κ

′

α√
|(τ ′

α)2 − (κ′
α)2|

, cosh g4(t) =
τ

′

α√
|(τ ′

α)2(κ′
α)2|

. (5.15)
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Similarly, we know that equation (5.6) is equivalent to,

(τα sinh g4(t)− κα cosh g4(t))g
′

4(t) = 0.

If τα(sinh g4(t))− κα(cosh g4(t)) = 0 we have

κα
τα

= tanh g4(t) =
κ

′

α

τ ′
α

.

Now, by appyling a similar argument as Case 1,2,3, we obtain aκα − bτα = c for some constants
a, b, c with a2 + b2 6= 0 and c 6= 0.

Conversely, if κα and τα satisfy aκα − bτα = c for some constants a, b, c satisfying a2 + b2 6= 0
and c 6= 0, then κα and τα satisfy the differential equation (5.6). This proves statement(a).

Assume that the centrode Dα(t) is a spacelike rectifying curve. Then statement (a) implies that
the curvature and torsion of α(t) satisfy a non-homogeneous linear equation

aκα − bτα = c,

for some constants a, b, c satisfying a2 + b2 6= 0 and c 6= 0. In particular, we have (i) b 6= 0 or (ii)
a 6= 0.
Case (i): b 6= 0. We find from (5.12) that

τ
′

α = ĉκ
′

α, ĉ =
a

b
6= ±1. (5.16)

Therefore we get from (5.2) and (5.3)

υD = κ
′

α

√
|ĉ2 − ε|, (5.17)

TD =
ĉ√
|ĉ2 − ε|

Tα −
1√
|ĉ2 − ε|

Bα.

Consequently, equation (5.5) reduces to

κ
′

α

√
|ĉ2 − ε|κDND =

ĉκα − τα√
|ĉ2 − ε|

Nα,

κD =
(ĉκα − τα)

κ′
α(|ĉ2 − ε|)

, ND = Nα. (5.18)

By using equations (5.15), (5.16) and BD = TD ×ND we get,

BD = − 1√
|ĉ2 − ε|

Tα +
ĉ√
|ĉ2 − ε|

Bα,

which on differentiation and using Frenet-Serret formulae gives,

τD =
−ĉτα + κα
κ′
α(|ĉ2 − ε|)

.
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This proves statement (b).

Case (ii): a 6= 0. From (5.14) we have κ
′

α = cτ
′

α, c =
b

a
6= ±1. Thus we may apply a method

similar to Case (i) to obtain statement (c). q.e.d.

Remark 5.3. The condition aκα− bτα = c with a2 + b2 6= 0 and c 6= 0 given in theorem 4.1(a) has
been used by Lucas and Ortega-Yages in [13] for their study of Bertrand curves in the Euclidean
3-space E3 or Lorentz-Minkowski 3-space L3.

Remark 5.4. Let α(t) be the unit speed spacelike curve of theorem 5.1 with κ
′

α 6= 0 (τ
′

α∓ 6= κ
′

α)
such that the centrode Dα of α is a spacelike rectifying curve. Then as τ

′

α = ĉκ
′

α with ĉ∓ 6= 1, we

get ĉκα = τα + c1 for a constant c1 6= 0 (as
τα
κα

is non-constant), that is, ĉκα − τα = c1. Moreover,

the arc-length parameter s of the spacelike rectifying curve Dα satisfies
ds

dt
= κ

′

α

√
|ĉ2 − ε| which

gives

s = κα
√
|ĉ2 − ε|+ b,

for a constant b. Thus after using the expressions of curvature and torsion of Dα we obtain,

τD
κD

=
−ĉτα + κα
ĉκα − τα

=
−ĉτα + κα

c1
=
−ĉ
c1

(ĉκ− c1) +
κα
c1
,

= (
−ĉ2 + 1

c1
)κα + ĉ =

−ĉ2 + 1

c1
(

s− b√
|ĉ2 − ε|

) + ĉ,

= As+B,

where A 6= 0, B are constants. Thus, the ratio
τD
κD

is a linear function of the arc-length s as

required by a spacelike rectifying curve (cf. [2, Theorem 2]).
Also, we get

|τ2α − εκ2α| = |(ĉκα − c1)2 − εκα2| = |κ2α(ĉ2 − ε)− 2ĉc1κα + c21|,

= |ĉ2 − ε| (s− b)
2

|ĉ2 − ε|
− 2c1ĉ

(s− b)√
|ĉ2 − ε|

+ c21,

= s2 + λ1s+ λ2,

where λ1, λ2 are constants in E3
1 . Therefore the distance function f(s) = ‖Dα‖ of the spacelike

rectifying curve Dα satisfies f(s) =
√
s2 + λ1s+ λ2, as required by a spacelike rectifying curve.

Note that similar arguments hold for a unit speed spacelike curve α(t) with τ
′

α 6= 0 (instead of
κ

′

α 6= 0) and with a spacelike rectifying centrode.
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Corollary 5.5. Let α : I → E3
1 be a unit speed spacelike curve whose curvature κα and torsion τα

satisfy κ
′

α 6= 0,
τα
κα

non-constant, and τ
′

α = ĉκ
′

α, ĉ 6= ∓1 being a constant. Then the centrode Dα

of α is a spacelike rectifying curve with curvature κD = ± a

κ′
α

and torsion τD =
b1s+ c1
κ′
α

for some

constants a, b1 6= 0 and c1.

Proof. Under the hypothesis of the theorem, we have

τD
κD

=
−ĉτα + κα
ĉκα − τα

,

which implies

1− (
τD
κD

)2 =
ĉ2 − 1

(ĉκα − τα)2
(κ2α − τ2α). (5.19)

Now, as τ
′

α = ĉκ
′

α, we have ĉκα − τα = c0, where c0 is non-zero constant (as
τα
κα

is non-constant),

and from equation (5.19), we get
κ2D − τ2D
κ2α − τ2α

=
ĉ2 − 1

c20
κ2D. (5.20)

By according to equation (5.19), we find

κ2D − τ2D =
ĉ2 − 1

(κ′
α)2(ĉ2 − ε)2

(κ2α − τ2α),

that is,

κ2D − τ2D
κ2α − τ2α

=
ĉ2

(κ′
α)2(ĉ2 − ε)

.

After combining this equation with equation (5.20), we get
(i) If Tα, Nα are spacelike vectors and Bα is a timelike vector, i.e. ε = 1, then we have

κ2D =
c20

(κ′
α)2(ĉ2 − 1)2

=
c22

(κ′
α)2

,

where c2 is a non-zero constant. Therefore we obtain the required expression for the curvature κD
of the spacelike rectifying curve Dα.
(ii) If Tα, Bα are spacelike vectors and Nα is a timelike vector, i.e. ε = −1, then we have

κ2D =
c20

(κ′
α)2(ĉ2 + 1)2

=
c23

(κ′
α)2

,

where c3 is a non-zero constant. Therefore we obtain the required expression for the curvature κD
of the spacelike rectifying curve Dα.

The arc-length function s of the spacelike rectifying curve is given by s = κα
√
|ĉ2 − ε|+ c3 for a

constant c3 and consequently, using the expression for torsion τD in statement (b) of theorem 5.1,
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we derive that

τD =
−ĉτα + κα
κ′
α|ĉ2 − ε|

=
−ĉ(ĉκα − c0) + κα

κ′
α|ĉ2 − ε|

,

(−ĉ2 + 1)κα + ĉc0
κ′
α|ĉ2 − ε|

=
1

κ′
α

(−ĉ2 + 1)[
(s− c3)√
|ĉ2 − ε||ĉ2 − ε|

+
ĉc0
ĉ2 − ε

].

(i) If Tα, Nα are spacelike vectors and Bα is a timelike vector, i.e. ε = 1, then we have

τD = − 1

κ′
α

[
(s− c3)√
ĉ2 − 1

− ĉc0,

=
c4s+ c5
κ′
α

,

where c4 6= 0 and c5 are constants.
(ii) If Tα, Bα are spacelike vectors and Nα is a timelike vector, i.e. ε = −1, then we have

1

κ′
α

[
(−ĉ2 + 1)(s− c3)√
ĉ2 + 1(ĉ2 + 1)

− ĉc0
(ĉ2 + 1)

,

=
c6s+ c7
κ′
α

,

where c6 6= 0 and c7 are constants. q.e.d.

Remark 5.6. A result similar to corollary 5.1 holds for a unit speed spacelike curve satisfying

τ
′

α 6= 0,
τα
κα

non-constant, and κ
′

α = cτ
′

α with constant c.

6 Dilated centrodes as spacelike rectifying curves

Finally, we study the dilated centrode of a unit speed twisted spacelike curve α : I → E3
1 with

κα > 0, τα 6= 0. The dilated centrode of α(t) is defined by

β(t) = ρα(t)Dα(t) =
τα(t)

κα(t)
Tα −Bα, (6.1)

where Dα = ταTα − καBα is the centrode and ρα = κ−1
α is the radius of curvature of α spacelike

curve.

Theorem 6.1. Let α : I → E3
1 be a unit speed spacelike curve with curvature κα > 0. If α is

neither a planar spacelike curve nor a helix, then the dilated centrode β(t) = ρα(t)Dα(t) of is α
spacelike rectifying curve.

Proof. Let α : I → E3
1 be a unit speed spacelike with curvature κα > 0. Suppose that α is neither

a planar spacelike curve nor a helix. Consider the dilated centrode of defined by (6.1). By differ-
entiating equation (6.1) and using Frenet-Serret formulae, we get

(β)
′

= (ρατα)
′
Tα,
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and since α is not a helix, we have (ρατα)
′ 6= 0. Thus the dilated centrode β(t) is a regular spacelike

curve whose speed υβ and unit tangent vector field Tβ are given respectively by

υβ = (ρατα)
′
,

Tβ = Tα.
(6.2)

Let {κβ , τβ , Tβ , Nβ , Bβ} be the Frenet-Serret apparatus of β. Then after differentiating equation
(6.2) we find,

κβ(ρατα)
′
Nβ = καNα,

and
κβ =

κα
(ρατα)′ , Nβ = Nα. (6.3)

Using equations (6.1) and (6.3) we find that 〈β,Nβ〉 = 0, that is, the dilated centrode β is a
spacelike rectifying curve. This proves the theorem.
Note that if follows from (6.2) and (6.3) that Bβ = Bα and that,

τβ =
τα

(ρατα)′ . (6.4)

q.e.d.

Remark 6.2. Let α : I → E3
1 be a unit speed spacelike curve with Frenet-Serret apparatus

{κα, τα, Tα, Nα, Bα}, κα > 0, τα 6= 0 and (ρατα)
′ 6= 0. Then according to theorem 6.1, the

spacelike curve β(t) = ραταTα − Bα is a spacelike rectifying curve whose Frenet-Serret appara-
tus {κβ , τβ , Tβ , Nβ , Bβ} is given by equations (6.2) and (6.3). If s is the arc-length of β, then by
equation (6.2) we have s = ±ρατα + c for a constant c. The distance function f(s) = ‖β(s)‖ in
view of equation (6.1) is given by

f(s) =
√
|(ρατα)2 − ε| =

√
(s− c)2 + (−ε) =

√
s2 + c1s+ c2,

where c1 = −2c, c2 = c2 − ε. Hence the distance function f(s) of the spacelike rectifying curve β
has the form described in [2].
Similarly, using equation (6.3) and (6.4), we get,

τβ
κβ

=
τα
κα

= ∓(s− c) = as+ b,

where a 6= 0, b are constants. Therefore the ratio of torsion and curvature of the spacelike rectifying
curve β is the linear function of the arc-length [2].

Example 6.3. Let the curve α : I → E3
1 defined by

α(t) = (cosh t, sinh t,
t2

2
).

The speed, unit tangent vector field, and curvature of α given respectively by

υα =
√
t2 + 1, Tα =

1√
t2 + 1

(sinh(t), cosh t, t), κα =

√
t2 + 2

(t2 + 1)
3
2
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for t > 1 and the principal normal vector field

Nα =
1√

(t2 + 1)(t2 + 2)
((t2 + 1) cosh t− t sinh t, (t2 + 1) sinh t− t cosh t, 1).

The binormal vector field and torsion of α are

Bα =
1√
t2 + 2

(t sinh t− cosh t, t cosh t− sinh t,−1) , τα =
−t

t2 + 2
.

Consequently, we have κα > 0 and that α is neither a planar curve nor a helix. Hence, by theorem
6.1, the dilated centrode

β(t) =
1

κα
Dα(t) =

(
τα
κα

)
Tα −Bα,

of α is a spacelike rectifying curve.
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